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Two-dimensional steady surface waves on a shearing flow are computed for the
special case where the flow has uniform vorticity, i.e. in the absence of waves the
velocity varies linearly with height. A boundary-integral method is used in the
computation which is similar to that of Simmen & Saffman (1985) who describe such
waves on deep water. Particular attention is given to the effects of finite depth with
descriptions of waves of limiting steepness, waves with eddies beneath their crests
and extremely high waves on high-speed flows.

Many qualitative features of these waves are relevant to steep waves propagating
in shallow water, or on a strong wind-induced drift current. An important practical
point in the interpretation of wave measurements of wind driven waves is that mean
kinetic energy and potential energy densities are unequal even for infinitesimal
waves. This may mean that wave energy spectra deduced from surface-elevation
measurements in the conventional way may sometimes be misleading.

1. Introduction

Most of the theoretical results concerning surface waves on water make the initial
assumption of irrotational flow. There are many circumstances in which this is well
justified. However there are cases where it is inappropriate. Two examples are
particularly common and can scrve to orient discussion. Waves are most commonly
generated by wind and in any region where the wind is blowing there is a surface drift
of the water. Banner & Phillips (1974) demonstrate that a thin wind-drift boundary
layer can have O(1) effects on the maximum height of a steady gravity wave. They
simply consider Bernoulli’s equation in a reference frame moving with the wave.
Theoretical studies of the initial instability of wind over water include the velocity
shear and have recently been well supported by experimental evidence (Caulliez
1987).

Currents always cause shear at the bed of the sea or of a river. If the water is
shallow and waves are long the shear can become a dominant feature in the waves’
dynamics. Peregrine (1974) described very steep waves arising when there is strong
shear near the water surface and modelled them by considering a thin jet of water
flowing at the surface.

Theoretical work on waves propagating on currents that vary with depth is
reviewed in Peregrine (1976, §4). Results for steep waves can be divided into two
classes: (i) weakly nonlinear waves obtained by a perturbation expansion and (ii)
numerical solutions mainly for constant vorticity. Of the works on weakly nonlinear
waves two merit particular mention. Tsao (1959) studies waves with constant
vorticity and water depth with a third-order Stokes expansion. Benjamin (1962)
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recasts the problem into an equation for streamline height and finds solitary-wave
solutions. Numerical work has been largely for constant vorticity : Dalrymple (1974)
takes two layers of constant vorticity with finite water depth and uses a Fourier
series expansion of the stream function, and Simmen & Saffman (1985) solve for very
steep waves in deep water by discretizing a boundary-integral expression.

The present work is confined to two-dimensional inviscid steady waves with
constant vorticity. An inviscid approximation is often realistic since the velocity
profile in the water, whether due to laminar viscosity or turbulent mixing, is usually
established over timescales and lengthscales which are long compared with a wave
period or wavelength. Emphasis is given to steep waves and the effects of finite
depth.

The choice of constant vorticity simplifies the mathcmatics considerably. Whether
or not important aspects of the flow are lost when compared with a more rcalistic
vorticity distribution is less clear. For two cases it is likely that the constant vorticity
solutions are representative. One is when waves are short compared with the
lengthscale of the vorticity distribution; then they are deep water waves and are
sufficiently short that they are only influenced by the value of vorticity at the
surface. Since Simmen & Saffman (1985) deal with deep-water waves, this case is not
discussed here in detail. The other case where constant vorticity may give a good
description is when the waves are long compared with the water depth. In this case
it is the existence of a non-zero mean vorticity that is important rather than its
specific distribution ; a matter that is returned to in discussion of the solutions.

In the next two sections the mathematical background and method is described.
The numerical method has many similarities to that of Simmen & Saftfman (1985).

The parameter space of solutions has three dimensions corresponding to the usual
variations with amplitude and wavelength or period plus a variation with vorticity.
The whole parameter space is not fully described. Emphasis is given to the solitary-
wave limit where variations of wave amplitude and vorticity are considered. The
solutions which differ most from irrotational waves are high waves with large Froude
numbers. These high waves enclose large regions of closed circulation and are
discussed in some detail since their shape appears to be insensitive to the vorticity
distribution.

The flows described are idealized and in that respect many details are of academic
interest, on the other hand general features of the waves are important for
applications. Some of the features such as the variation in steepness of the limiting
waves, and the tendencies for waves to become more or less sharply peaked as
vorticity varies are relatively well known. We draw particular attention to the
considerable differences that can exist between the potential and kinetic energy
densities of waves with vorticity. This could be important in studying the energetics
of waves in a strong wind. The detailed solutions corresponding to the very large
waves which are found on very high Froude number flows could also be valuable
since these are likely to form in civil engineering works, e.g. the ‘wave’ hydraulic
jump, and seem to be similar to the waves formed over antidunes in supercritical flow
over mobile beds.

2. Mathematical preliminaries and analytic approximations

A steady two-dimensional incompressible flow may be described by a stream

function ¥(x, y), in which case
V¥ = —¢, (2.1)



Waves on water of finite depth with constant vorticity 283

where ¢ is the vorticity, which is perpendicular to the (z, y)-plane. If vorticity is
uniform and constant throughout the flow then Kelvin’s circulation theorem can be
used to show that it remains constant whilst the flow remains two-dimensional and
simply connected. Hence (2.1) holds within the fluid and ¥ can be rewritten as the
sum of a particular integral satisfying (1.1) and an irrotational stream function
Y(x, y). It is this feature of constant vorticity flows that simplifies analysis.

We choose a reference frame in which the wave is at rest, ¥y = 0 is the undisturbed
free surface or mean water level and y = — A is the plane rigid bed. The water velocity

u is described by

in which ¢ is a velocity potential for the finite perturbation to a horizontal flow with
constant vorticity {. The stream function

=1y —cy+y(x, y), (2.3)

where i and ¢ describe the same irrotational perturbation. The constant ¢ represents
the wave velocity relative to the ‘original’ water velocity at the surface.

The definition of the waves’ phase velocity is not a trivial matter. We use the
equivalent of Stokes’s (1847) first definition of velocity, i.e. the perturbation velocity
due to the wave at any point below a wave trough is chosen to be such that its phase
average is zero, i.e. in this case ¢ and i are periodic functions of x. Stokes’s second
definition of phase velocity is the wave speed which gives zero mass flow. For a
linearized wave in this case, this alternative definition gives

¢, = c—3Ch, (2.4)

whereas for linearized irrotational waves the velocities would be identical.

The stream function i and velocity potential ¢ both satisfy Laplace’s equation
within the fluid.

The kinematic boundary conditions are

¥ = —L1{y*—cy+y = constant, (2.5)
at the free surface y = 5(x), and
¢, =0, (2.6)
on the bed, y = —A. The constant pressure condition at the free surface becomes
Hpo—Cy—c)+idy+g1 = B, (2.7)

after using Bernoulli’s equation.
The lincarized solution is readily found and gives a dispersion relation which can
be written

2
c?,—-gﬁ Co—ci =0, (2.8)
g
where ¢, is the linear phase velocity and
¢ = (g/k) tanh (kh) (2.9)

is the dispersion relation for linearized irrotational waves of wavenumber %. Solving
the quadratic (2.8) for ¢, gives

2 2,9\1
co~§§—;=icl(l+i—;;). (2.10)
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FicUre 1. Sketches indicating wave direction and shear profile. On the left (i) is the configuration
we use, and on the right (ii) the equivalent wave stationary on a stream. (a) Wave propagating
upstream, positive vorticity. (b) Wave propagating downstream, negative vorticity.

Using (2.9) and comparing with the undisturbed flow we can interpret (2.10) as
showing that the waves travel symmetrically with respect to the flow at a depth

¢t tanh (kh)

W= 5 2k (2.11)
which gives a measure of the depth of water which influences the wave properties, or
‘wave depth’. The limiting values of W for large and small kh are 3k and 3k
respectively. The right-hand side of (2.10) shows that shear increases the wave speed
of linearized waves.

A critical layer occurs in the flow if at any depth

c=—Ly,

let &, = ¢/{ be the critical layer depth. Substitution in the linear dispersion equation
(2.8) and use of the wave depth, W, gives

929 \¢
he =W+ W(1+€2§V) ,
for linear waves.
Thus if there is a critical layer it is always at a depth greater than 2W, and then
only ncar 2W for strong shears. Critical layers only occur for waves propagating
‘upstream’, and when

g tanh kh )]2. 2.12)

> [h(kh—tanh oh

In order to fix ideas we shall only consider positive values of ¢ and k but allow ¢
to have either sign. For convenience of description we shall refer to ‘upstream’ and
‘downstream’ in the sense of waves propagating on a flowing stream with maximum
velocity at the surface. See figure 1(a) in which our configuration for { positive is
shown and the effect of a stream giving wave propagation ‘upstream’. Similarly
figure 1(b) shows { negative and the corresponding ‘downstream’ propagation. The
downstream case is equivalent to downwind propagation for the case of a shear
generated by the wind.
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Tsao (1959) extends the linear theory to a third-order solution following the same
type of approach as for the irrotational Stokes-wave expansion. Tsao’s results, in
particular phase-speed, have been checked and agreet with our computed results.

Tsao’s results show that upstream propagating waves are more rounded, i.e. have
less deviation from a sinusoidal wave, whilst downstream propagating waves have
sharper steeper crests. As in the irrotational Stokes waves successive terms in the
expansion increase as depth decreases. They also increase as the vorticity becomes
more strongly negative.

3. Numerical method of solution

Units are chosen so that £ = 1 and g = 1. This means that the wavelength is 2x.
We work with the complex velocity

. df

q(z) = u—iv = &’
where f = ¢ +iy. The boundary condition (2.6) on the bed is satisfied by considering
an image region, see figure 2(a). The area within one wavelength and its image is
mapped from the z-plane, with the transformation

Z(z) = exp(—iz), (3.1)

to give a closed region in the Z-plane, see figure 2 (b). The complex velocity potential
is chosen to be periodic so f(z) transforms to a single-value function F(Z) in the Z-
plane, analytic between § and S’ (see figure 2 for notation). The complex velocity
transforms

q(z) = %’g =—iZ %—g— = —iZQ(Z). (3.2)

For a point on the surface S in the Z-plane Cauchy’s integral theorem for a complex
function gives

QZ) az
PV 7
and hence from (3.2)
q(z) _ 1 J q(z') dz’
L2 — py —. 3.3
2) 1 Jpaess 20— 207) (3:3)

Figure 2 shows the curves over which the integrals are taken.
We now introduce a parametrization of the surface of the fluid. Let the surface

be
R(§) = x(£) +1y(§). (3.4)

The parameter £ is important in the discretization of the surface which is used in the
numerical approximation. It is given integer values at discretization points. The
parameterization is also chosen in such a manner that (i) points are concentrated
near the crest of a wave where they are usually needed to resolve higher curvatures,

T Equation (2.19) in Tsao (1959) should read, in Tsao’s notation:
C, = a®b(ck+1b).

10-2
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(2)

Fraure 2. (@) The region of water beneath one wavelength and its image at the z-plane.
(b) Transformed region in the Z-plane.

and (ii) R(£) is an analytic function of £ so that high-order numerical approximations
can easily be found and used with the equispaced discretization of £.
We require the parameterization to satisfy:

ds _ Kl|g—Cy—¢

df  1+asin?lc’ (3-5)

where s is arclength, K is a constant to be determined in the numerical solution and
a is given as a parameter. If we take  to be zero we have Simmen & Saffman’s (1985)
parameterization where ds/d§ decreases as we approach the wave crest, ensuring a
concentration of numerical points in that region. As the crest is usually placed at
x = 1t we have for positive values of a a still stronger concentration of points near the
crest and a consequent rarefaction at the troughs, that proves to be useful when
dealing with steep waves (Tanaka 1983, 1985) and with waves in very shallow water.
On the other hand big upstream propagating waves tend to have higher curvatures
at the troughs and in that case negative values of a can reduce concentration near
the crests.

The flat bed is chosen to be at y = —h. A point 2, on A’B’ is the image in the bed

of a point z; on AB where
2, = 2§ —2ih, (3.6)

(the asterisk denotes complex conjugate), thus

Z(zy) = 7™ Z(zf) =

and the velocity reflects to give

q(z) = g*(zy). (3.8)

In addition waves are presumed to be symmetrical about crests and troughs and
reflection about the plane x = 0, chosen to be at a trough, gives that an image point
2y 18

zg = —2F, (3.9)
Zizy) =Z(—28y=1/Z(2,), (3.10)
9(zs) = g*(z). 3.11)
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The effect of the above reflections and introduction of the parameterization is that
(3.3) can be rewritten:

™) _ py J" (&) Rg(é’)d§’+J”{ q*(€) RE(E)
o ZE)—Z(E) )y LZE)—1/Z(E)

Z()
(&) B () (&) B(E) } ,
- - N = ~rdE, (.12
e~ 24 E) mE—e 7)) = O
where notation is simplified by suppressing dependence on z.
Boundary conditions at the surface are incorporated as follows. The kinematic
condition that the velocity is parallel to the surface tangent may be written:

lg—Cy—c|R, = q*—Ly—c. (3.13)

Bernoulli’s equation (2.7) at the surface is:

lg— 8y —cl* = 2(B—gy). (3.14)
With the relations (3.13) and (3.5) the left-hand side of (3.12) is
ng(€)/Z(£) = n/Z(€) [c+ Ly — (1 +a sin® jz) R¥(£)/K] = F(£) (3.15)

say. The expression gR, which occurs in all the integrals on the right-hand side of
(3.12) can be written

qR; = (Ly+c)RB;+2K(B—gy)/ (1 +a sin® {x)= G(£) (3.16)

say. With the substitutions of (3.15) and (3.16) in (3.12) it becomes an integro-
differential equation for the functions x(§) and y(£).
To fix the solution we also impose that the height of the wave

H = y(n)—y(0). (3.17)
and its mean level is at y = 0, i.e.
B
f ydx=0. (3.18)
A
The mean velocity of the irrotational perturbation is chosen to be zero, and
becomes
- [ _(B—gy)dE
T T e =0 .
2K L 1+a sin2%x)+nc (3.19)

after using (3.16).
In order to discretize the integrals for numerical solutions it is necessary to deal
with the singular integral in (3.12). Following Dold & Peregrine (1986)

f” G(g) dg =( J-i f) G(g) 4
0 ZO=2E) o o) ZE-ZE)

£+ GE) G )d ,
+L_% (7 7@ Z@E-5)* B0
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The extra term in the last integral makes zero contribution but eliminates the
singularity since the whole integrand approaches

GdE) , G(E) Z(€) (3.21)
ZyE)  2Z§8)

as £ —~§.

Discretizing (3.12) by means of a trapezoidal rule, which is the most accurate
formula for integrating periodic functions given at equispaced points, using (3.21)
and giving integral values to £ we have the following set of equations

g G(E) (&)
(Z( )+

(2 \IO-2E) 2@ 22 ®)) " B8 20D

1l

£

G(E) [iR(£)+ R*E)] _ G*(€)
2R}(E) Z(£) Z(E)—e™"/ZX(§)

enroGRE)  GE) ]=O 5.9
*@[Z(g)—zw) ZE—cZE)| " (3:22)

+

These form a set of 2n equations, considering real and imaginary parts, as the
imaginary parts for £ = 0 and £ = n reduce to identities that can be easily checked
in (3.12) taking into account that Z(0) and Z(n) are real.

There are 2n+ 2 unknowns z(£), y(£) but 2(0) = 0 and x(n) = © are already chosen.
Further unknowns are ¢, B and K ; however these are catered for by equations (3.17),
(3.18) and (3.19).

The resulting system of 2n + 3 nonlinear equations is solved by Newton iteration.
The analytical form of the Jacobian has been found with the aid of the computer
algebra program MACSYMA which also provides Fortran code.

The initial approximation is provided either by Tsao’s (1959) third-order solution
or by a previous solution. Iterations are stopped when residues are less than 107°
which usually takes 4 to 7 iterations. The results are considered acceptable when the
two sides of the relation

21
B= %c+51E f |, pdx—{l/2n (3.23)
“ Y

where I is the excess impulse given below, agree to at least 5 decimal places.
Computations are done on a Systime 8750 (equivalent to a VAX 11/750). To
compute the second wave in figure 3(b), o =1, { =1 and H = 1, correct to 5 decimal
places, 11 points per half wave are enough. This result takes 6 iterations and 29.5
CPU seconds.

As well as checking against small-amplitude and irrotational results the
calculations have been checked by an independent program for unsteady constant-
vorticity waves which will be described in a future publication. The wave mentioned
above, with =1, { =1 and H = 1, propagated for 50 periods. In that time the
maximum slope changed 0.0006° and the height of the crest experienced a change of
0.000002, giving a good verification of both computations.

For the computation of limiting waves the program is modified by permitting an
angle at the crest and taking one-sided difference formulae in which case equation

3.19) is replaced b
( ) p y B—gy=0. (3.24)
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FigURE 3. (a) Periodic waves with { = —1 and & = 1 : extreme wave with H = 0.2549, ¢ = 0.6280;
also H = 0.12, ¢ = 0.5883. (b) Periodic waves with { = 1 and & = 1: extreme wave with H = 1.4589,
c=1.5408; also H =1, ¢ = 1.4421: and H = 0.5, ¢ = 1.3580.

Delachenal (1973) shows that the crest should have an angle of 120°, the vorticity
only affects the curvature on each side. That result is assumed in the computations
presented. When the angle is left free to be determined in the program, it is
calculated to be within a fraction of a degree of 120°.

Integral quantities that are evaluated include the excess impulse

2n 2n 0
1= @—waar+ [ [ gayas (3.25)
0 J-h 0 J-h
excess kinetic energy :
2r (g 2n
2= [ ot [ [ @raan e
0 J-n 0 Jon
excess potential energy:
21
2V = j gn®da. (3.27)
0
Applying Stokes’s theorem to (3.25) and (3.26) we have
2n d¢ 2n dzx
o — oy — 1E4%) =2 1p2 EJ—— | y
odg |, ,dx
= —+iy*—d 29

where the surface integrals are expressed in terms of the point parameter &.
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Fiaurk 4. Graphs phase speed against wave height for five sets of periodic waves with A = 1:

{=—1,{=0,{=1,{=2¢=3

4. Periodic waves

The solutions in our scaled variables have wavelength 2 and gravity unity, and
depend on the three parameters: vorticity, {, wave height, H, and mean water depth
h. Prominent characteristics of the effect of vorticity are already evident in Tsao’s
(1959) approximations and Simmen & Saffman’s (1985) numerical solutions for deep
water. For negative vorticity (waves propagating ‘downstream’) crests become
sharper and smaller. For positive vorticity (waves propagating ‘upstream’) waves
become more rounded, and for strong positive vorticity overhanging profiles and
bizarrc variations of phase velocity with height occur.

Our computations cover a region of the three-parameter space in which ¢ varies
from —1 to 3, A from 0.5 to 2 and H from zero to the extreme wave allowed by the
other parameters. Representative examples are shown in figure 3, for =1 and
{ = £ 1. These figures, and all other figures showing wave profiles are without any
vertical exaggeration. The effects of vorticity mentioned above are clear, as is the
strong dependence on vorticity of the limiting wave height. The different curvatures
at the crests of the limiting waves may also be noted. The phase velocities of waves
for a wide range of vorticities for this depth of water are given in figure 4. As with
irrotational waves velocity increases with amplitude except near the limiting waves.
The variation with vorticity is mainly that which is evident in the linear dispersion
equation (2.10). It is also clear that for larger vorticity very high waves with high
speeds are possible. We discuss these waves below. One important feature where
vorticity has a strong influence even on small amplitude waves is the partition of the
energy density between kinetic energy, T', and potential energy V. For linear waves

the ratio is
T . 1
= =2 = 14+ 222+22(1 + A%, (4.1)
V e

where A = 1 /g = Y(tanh (kh))E, (4.2)
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Fiaurs 5. Graphs of T'/V against wave height for three sets of periodic waves with A = 1:
{=—-1,{=0and {=1.
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Ficure 6. Periodic wave profiles for A = 2, { = 3: extreme wave with H = 6.489, ¢ = 6.845;
also H=6,c=6.748; H=5,¢c=7.110; H=4, ¢ =6.906; and H = 1, ¢ = 3.444.

in dimensional units. Note that there is an appreciable variation of 77/V in the range
of vorticity —1 < { < 1. The variation with wave amplitude for cases with A =1 is
shown in figure 5. This shows the importance of the linear ratio, relative to the
amplitude variation. The substantial variation of the 7'/V ratio is not usually
allowed for in the analysis of field and experimental wind waves. In such analysis
linear irrotational flow results are normally used to calculate quantities such as
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Fieure 7. (a) Profile of a pure rotational wave (g = 0). with { =1, H = 2.45 and ¢ = 1.153.
(b) Sketch of a possible limiting wave, for zero gravity.

energy spectra from measurements of surface elevation. In strong winds the vorticity
near the surface, may often be strong enough to make a suitable eorrection
significant for the shorter waves. The dimensionless parameter A defined in (4.2)
shows that for waves of given wavenumber the effect of vortieity is less in shallow
water, where the factor tanh (kh) is smaller than in deep water.

For values of vorticity larger than 1, Simmen & Saffman (1985) found waves with
bizarre shapes and high phase velocities. Even stranger waves are found in finite
water depths. A selection of wave profiles for { = 3. 2 = 2. are shown in figure 6. For
water of this depth surface waves are often trecated as deep water waves since
tanh (2) = 0.96, however as figure 6 shows all the large waves have flat troughs which
are clearly limited by the presence of the bed. Even for much greater values of A this
phenomenon is evident.

It appears that the volume of water specified in a computation is the quantity
most relevant in determining the range of large waves found. For finite depth of
water the condition of zero mcan level signifies a constant area 2mh in the
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computation. Thus all the waves in figure 6 have the same volume of water above the
bed. In deep water there is no volume constraint, nor is there such a constraint for
solitary waves, unless volume above the mean surface level is used as a parameter to
specify waves. The ‘finite volume’ also means that despite the existence of
overhanging wave profiles, relatively large values of 2 are needed before it is possible
for the overhangs to touch. Simmen & Saffman (1985, figure 9) have gaps in their
solution branches due to touching and overlapping waves. By considering the
following extreme case it is possible to estimate the volume of water required for an
overlapping wave.

The large rounded waves have large values of vorticity, phase-velocity and of the
ratio 7/V. These suggest that vorticity and inertia are more important than gravity.
It takes only a little imagination to move from the profiles of ‘medium’ height in
figure 6 to a gravity-free wave which is shown in figure 7(a). Further, the trend of
solutions suggests that there may be a limiting wave which has a circular shape made
up of water in rigid-body rotation as sketched in figure 7(b). The fluid velocity is
continuous with that in the layer of water beneath if the circle rolls on the surface.
Clearly the thickness of the lower strip of water can have any value. 1f the circle were
the limit of periodic waves then they would touch at a wavelength of 2r only if the
mean level were greater than in®

The circular vortex ‘wave’ can also be solitary. All the higher wave profiles in
figure 6 have the character of solitary waves. That is, the troughs are flat and
correspond to uniform sheared flow. Further features of these waves are discussed in
the following section on solitary waves.

5. Solitary-wave solutions

The natural lengthscale for the study of solitary waves is the depth of the
undisturbed flow, h, so that in presenting data, different units are now used with %
and gravity as unity whereas for the periodic waves the wavelength is chosen as 2n.
In particular, this means that values for vorticity are not directly comparable, for
example the three highest waves with vorticity { = 3 in figure 6 have vorticities
Q =1.415 Q = 1.165 and £ = 1.283 in order of increasing wave height, where £2 is
the dimensionless vorticity in the new units. On the other hand infinitely many
different periodic waves with flat troughs when scaled by the solitary-wave units
based on water depth in the trough give the same solitary wave. That fact helps to
clarify the interaction between vorticity and depth already mentioned for shallow-
water periodic waves (see equations (4.1) and (4.2)). In these solitary wave units we
denote the wave height by a. A different definition of wave velocity is also
appropriate. We define S to be the wave velocity relative to the surface water in the
region with constant depth, again taking figure 6 as an example, the three higher
waves have § = 4.162, § = 5.286 and S = 4.221 in that order, whereas the values of
¢ are ¢ = 2.008, ¢ = 2.471 and ¢ = 2.438, respectively.

Most of the examples of solitary waves presented here were calculated by using the
program for periodic waves with depth from trough to bed A = 0.2, that is with
wavelength 107 times the depth, some with A = 0.1 and others with 2 =0.01. An
indication of accuracy is gained by comparison with irrotational wave results. The
limiting irrotational solitary wave has height a = 0.8332 and velocity S = 1.2909
(Hunter & Vanden-Broeck 1983), whereas with 40 points per half wave we found
0.8302 and 1.2885 respectively. Profiles of the limiting irrotational solitary wave and
the limiting waves for = +1 are shown in figure 8. We have verified that the
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Fiourze 8. Profiles for the limiting solitary waves; for Q =—1, ¢ = 0.272, § = 0.738;
for 2 =10, a2 =0.830, § =1.288; and for Q = 1. a = 4.898, § = 3.130.
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Ficure 9. Graphs of solitary wave velocity against wave-height for four values of Q:
-1, —0.5, —0.25, 0.

periodic computations do permit appropriate exponential decay for the outskirts of
these solitary waves.

The velocities § of a range of solitary waves are shown in figures 9 and 10. The
approximate weakly nonlinear result of Benjamin (1962 equation (4.7)) is used for
the low-amplitude results since these waves have a greater length than the limited
region we use. The curves shown would lie much closer together if the velocity were
taken relative to the mean flow, i.e. if S—1Q were shown. Benjamin’s result in our

con et
notation 13 (S—10Q)* = 1 +1Q%+ (14102 a+ O(a?). (5.1)

The variations shown in figure 10 are more striking. Note the difference in scales
between figures 9 and 10. The curves for £ = 1.15 and £ = 1.175 show that there
may be as many as three different waves of the same height with different velocities.
The “loop’ in the curve which grows rapidly with €2 once € > 1 could not be fully
defined for 2 = 1.2. The limiting wave with a corner at its crest for 2 = 1.2 has
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Frevre 10. Graphs of solitary wave velocity against wave-height for six values of Q:
0,025, 0.5, 1.0, 1.15, 1.175.
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Freure 11. Curves in the vorticity, wave-height plane: . Extreme solitary waves; ————,
Highest solitary waves; ——, Solitary waves with zero pressure gradients at their crests; -.-.-.- ,

Line separating solitary waves with eddies (above) from those without.

height a = 9.28, but the search for the highest wave on the two branches of the
loop was stopped after waves of height approximately 34 and 40 were found. From
the discussion at the end of the last section we expect the wave height and phase
velocity of the higher and rounder waves can increase indefinitely for large enough
vorticity.

In figurc 11 we show four different curves: the first one gives the values for the
wave-height of the limiting waves for values of £ ranging from —1 to 1.175, we know
that from 2 = —1 to £ = 1 the limiting wavc is the highest wave so, in that region,
all the solutions stay between the horizontal axis (zero wave height) and the curve
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FicURE 12. Graphs of total energy against wave height for solitary waves with 2 = 1.1
and 2 = 1.175.
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Ficure 13. The ratio of kinetic energy to potential energy variation with wave height for solitary
waves with £ = 1.1 and 2 = 1.175.

of limiting waves, then for £ slightly greater than 1 we start to have round waves
higher than the limiting waves, the maximum values of @ for those higher waves are
shown by the curve that diverges from the curve of limiting waves, we could not
compute many values since for values of £ > 1.175 they appear to increase
extremely fast with Q, as already noted. The third curve shows the boundary
between waves with and without eddies beneath their crests. Eddies are discussed
in the next section. Finally the last curve marks the divide between waves with the
pressure underneath their crests below the atmospheric value and those with this
pressure above that value, also discussed in the next section.

The values of energy both kinetic and potential for all the waves with £ = 1.1 and
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F16URE 14. (a) Streamlines and (b) pressure contours for periodic wave with { =2 h=1 H = 1.
Rescaling in solitary wave units: 2 = 1.481, a = 1.823 and § = 3.302 (not a good example of a
solitary wave!).

£2 = 1.175 are presented in figures 12 and 13. Figure 12 shows the values of total
energy (T+ V) for both values of vorticity, and we find the same pattern as for wave
speed ; figure 13 shows the ratios 7'/V and we find again in a lesser scale the same
behaviour. Considering the results in both figures we conclude that for high enough
values of the vorticity £2, as we increase wave height we move into a region of the
solution space in which the waves have an excess of kinetic energy, over 80 % of the
total, and look very round in the manner of the pure vortical wave shown in the end
of last section. Then as we proceed along the solution curve the share of kinetic
encrgy is reduced in favour of potential energy. In other words we move from a
region in which the vortical effects are dominant, the upper part of the folds, towards
one in which gravity is more important, the lower portion of the folds. As vorticity
increases there appears to be no bound for wave height and energy.

These results for solitary waves look closer to the results for deep-water waves
presented by Simmen & Saffman (1985) than to those for periodic shallow-water
waves, in the sense that the former show such peculiarities as folds in the curves for
phase velocity against height and the existence of waves higher than extreme waves,
that we did not find in the latter. Periodic deep-water waves and solitary waves have
in common the infinite mass of available water unlike periodic shallow water waves.
A solitary wave does not have the possibility of self interception so it cannot give rise
to ‘gaps’ in the solution space.

6. Surface shear waves, eddies and stability

The large bulbous waves displayed in figures 3 and 11 can be better understood
after examining the velocity and pressure fields beneath the surface. One repre-
sentative wave is shown in figure 14. As may be scen there is a large closed
eddy beneath the wave. Note also its velocity in solitary-wave units, S = 3.302,
corresponds to a high Froude number. These large waves can be interpreted, if
stationary, as a thin sheet of high-speed water passing over an eddy.

There is a close resemblance between these waves and the ‘surface shear waves’
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Freure 15. A surface shear wave occurring naturally in backwash on a beach.

described in Peregrine (1974). That model was stimulated by the observation of steep
large rounded waves in the backwash of waves incident on beaches. Such a wave
arising naturally is shown in the photograph of figure 15. Another surface shear wave
also described in Peregrine (1974) is the ‘wave hydraulic jump’ (see also discussion
of that paper). Both of these waves are easily reproduced in the laboratory, and are
usually almost stationary on a fast moving strcam. They occur over fixed beds, but
also seem to have a counterpart in supercritical flow over antidunes on a mobile
bed.

Percgrine’s (1974) model does not depend on a specific vorticity distribution but
simply characterizes the thin sheet of surface water by its momentum flux and
considers its deflection due to hydrostatic pressure in the almost stagnant water
beneath it. The ordinary differential equation so obtained for the shape of the wave
is the same as that for the finite bending of a thin beam or elastica. This gives an easy
way of comparing Peregrine’s solution with the figures in this paper: just take a piece
of paper or card and bend it whilst holding it at each side. Comparison with figure 14
will show that most of the wave closely follows such a curve.

The pressure field in figure 14(b) is casily interpreted in terms of a high-speed
surface flow. A high transverse pressure gradient is required to turn the flow sharply
at the basc of the wave, hence the substantial excess pressures on the bed. Then over
the main portion of the wave the pressure falls below atmospheric as in Peregrine’s
(1974) model, and ‘sucks’ the surface jet around in a curve which is tighter than the
corresponding free-fall parabola. As the jet ‘lands’ near the bed once again high
pressure gradients turn it back into a horizontal flow. To some extent the constant
vorticity flow here may be a better model than Peregrine’s for very steep waves over
closed eddies. This is due to the Prandtl-Batchelor result that in two-dimensional
high-Reynolds-number flow steady recirculating regions with closed streamlines
have constant vorticity.
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Ficure 17. Vorticity and wave height for periodic waves, the full lines give the wave height of the
limiting wave, for three different values of 2, A = 0.5, 1 and 2, the broken lines mark the separation
between waves with and without eddies for the corresponding depths.

Flow separation from a solid surface is often thought of as a viscous boundary-
layer phenomenon. However, as these solutions show, separation to form an eddy
occurs for inviscid flows with vorticity. This is not a new observation, Perry & Fairlie
(1975) discuss an example where their inviscid model with vorticity gives streamlines
for an eddy of separated flow which are similar to our free-surface example in figure
14 (a).

Eddies also occur for the periodic waves. In fact if there is a critical layer above
the bed ‘cats eye’ eddies form for any finite amplitude wave. Figurc 16 shows the
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Ficure 18. Rear view of a naturally oceurring surface shear wave in backwash. Note the way in
which irregularities of the flow have grown as they pass over the crest of the wave.

boundary in the (¢, A)-planc between linearized waves with and without a critical
layer, given by (2.12). As already noticed the critical layer for infinitesimal waves is
so deep that its influence on the waves is likely to be slight. Large waves are more
likely to have eddics and figure 17 gives an indication of when this occurs.

The low pressure beneath the upper half of the wave means that the normal
pressure gradient at the surface is opposite to the usual direction, with pressure
lower than atmospheric in the water. This implies the surface is susceptible to
Rayleigh-Taylor instability. This instability has its greatest growth rate for short
wavelengths. but at the shortest scales surface tension is a stabilizing influence. In
natural flows growth of the surface fluctuations due to initial turbulence is cvident
(see figure 18). The growth of small disturbances is limited by their translation
through the unstable region thus waves on a laminar flow can be both smooth and
steep. We also see such a growth of disturbances in unsteady computations.

7. Conclusions

We have presented some of the results of computations of steady periodic waves
on a flow of uniform vorticity. In part these give results that are the expected
extensions of the approximate-Stokes wave type of expansion of Tsao (1959), the
strcam-function approximation of Dalrymple (1974) and the deep-water results
obtained by Simmen & Saffman (1985) using a similar numerical method. Since these
results lack novelty, and precise numerical results are not of direct value for
applications because of the special vorticity distribution, we have given only a short
account of the periodic waves.

However it should be noted that there is a large variation in the ratio of kinetic
energy to potential energy. This implies that conventional measurements of wind
waves which use only surface elevation may give a poor approximation to the
total wave energy when there are steep waves riding on a significant wind drift
current.
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The solitary waves with positive vorticity, that is with vorticity such as a wave
propagating against a strcam would meet, show striking effects with large bulbous
waves which have no apparent upper limit on their size. There are parallels with the
stationary ‘surface shear waves’ described by Peregrine (1974). We consider that the
character of the bulbous waves is independent of the precise nature of their vorticity
distribution and the solutions presented here are likely to be a better model than
Peregrine’s very simple stationary shear layer. Solutions of this type are also
described by Pullin & Grimshaw (1988).

Surface shear waves arise readily as stationary waves on high-Froude-number
flows. We note that the upper portion of such waves has a pressure in the water that
is less that atmospheric. This permits growth of Rayleigh-Taylor instabilitics which
are evident when the waves form on turbulent flows.

An aspect of wider interest in fluid dynamics is the flow separation that occurs
from the bed in the steep waves. A closed eddy occurs for the upstream propagating
waves whenever there is a critical layer in the flow. However, the critical layer for
infinitesimal waves is always at a depth where wave induced flow is small and the
cats-eye eddies, which we obtain (and do not doeument here} are not important for
the surface flow (see also Peregrine 1976, §14, B3). For the solitary waves eddies are
important. Figure 11 gives an indication of the region in parameter space in which
eddies occur. We would particularly like to note that in unsteady flows, such as the
backwash on beaches, the surface shear waves arise spontaneously and slowly evolve
in shape. Any slowly varying type of solution is very likely to follow a trajectory in
parameter space which crosses the boundary between waves without eddies to waves
with eddies. Such a transition involves a flow separation from the bed which may be
entirely inviscid in character.

A F.T. da S. acknowledges financial support from ‘Conselho Nacional de
Pesquisas e Desenvolvimento Tecndlogico’ Cnpq, grant reference number 20.2554/
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