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Two-dimensional steady surface waves on a shearing flow are computed for the 
special case where the flow has uniform vorticity, i.e. in the absence of waves the 
velocity varies linearly with height. A boundary-integral method is used in the 
computation which is similar to that of Simmen & Saffman (1985) who describe such 
waves on deep water. Particular attention is given to the effects of finite depth with 
descriptions of waves of limiting steepness, waves with eddies beneath their crests 
and extremely high waves on high-speed flows. 

Many qualitative features of these waves are relevant to steep waves propagating 
in shallow water, or on a strong wind-induced drift current. An important practical 
point in thc interpretation of wave measurements of wind driven waves is that  mean 
kinetic energy and potential energy densities are unequal even for infinitesimal 
waves. This may mean that wave energy spectra deduced from surface-elevation 
measurements in the conventional way may sometimes be misleading. 

1. Introduction 
Most of the theoretical results concerning surface waves on water make the initial 

assumption of irrotational flow. There are many circumstances in which this is well 
justified. However there are cases where it is inappropriate. Two examples are 
particularly common and can serve to orient discussion. Waves are most commonly 
generated by wind and in any region where the wind is blowing there is a surface drift 
of the water. Banner & Phillips (1974) demonstrate that  a thin wind-drift boundary 
layer can have O(1) effects on the maximum height of a steady gravity wave. They 
simply consider Bernoulli’s equation in a reference frame moving with the wave. 
Theoretical studies of the initial instability of wind over water include the velocity 
shear and have recently been well supported by experimental evidence (Caulliez 
1987). 

Currents always cause shear at the bed of the sea or of a river. If the water is 
shallow and waves are long the shear can become a dominant feature in the waves’ 
dynamics. Peregrine (1974) described very steep waves arising when there is strong 
shear near the water surface and modelled them by considering a thin jet of water 
flowing at the surface. 

Theoretical work on waves propagating on currents that  vary with depth is 
reviewed in Peregrine (1976, 94). Results for steep waves can be divided into two 
classes: ( i )  weakly nonlinear wavcs obtained by a perturbation expansion and (ii) 
numerical solutions mainly for constant vorticity. Of the works on weakly nonlinear 
waves two merit particular mention. Tsao (1959) studies waves with constant 
vorticity and water depth with a third-order Stokes expansion. Benjamin (1962) 
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recasts thc problem into an equation for streamline hcight and finds solitary-wavc 
solutions. Numerical work has been largely for constant vorticity : Dalrymplc (1974) 
takes two layers of constant vorticity with finite water depth and uses a Fourier 
series expansion of the stream function, and Simmen & Saffman (1985) solve for very 
steep waves in deep water by discretizing a boundary-integral expression. 

The present work is confined to two-dimensional inviscid steady waves with 
constant vorticity . An inviscid approximation is often realistic since the velocity 
profile in the water, whether due to laminar viscosity or turbulent mixing, is usually 
established over timcscales and lengthscales which are long compared with a wavc 
period or wavelength. Emphasis is given to steep waves and thc effects of finite 
depth. 

The choice of constant vorticity simplifies the mathcmatics considerably. Whether 
or not important aspects of the flow are lost when compared with a more realistic 
vorticity distribution is less clear. For two cases it is likely that the constant vorticity 
solutions are representative. One is when waves are short compared with the 
lengthscale of the vorticity distribution ; then they are deep water waves and are 
sufficiently short that they are only influenced by the valuc of vorticity a t  thc 
surface. Since Simmen & Saffman (1985) deal with deep-water waves, this case is not 
discussed here in detail. The other case where constant vorticity may give a good 
description is when the waves are long compared with the water depth. In this case 
it is the existence of a non-zero mean vorticity that is important rather than its 
specific distribution; a matter that is rcturncd to in discussion of the solutions. 

In  the next two sections the mathematical background and method is described. 
The numerical method has many similarities to that of Simmen & Saffman (1985). 

The parameter space of solutions has three dimensions corresponding to the usual 
variations with amplitude and wavelength or period plus a variation with vorticity. 
The whole parameter space is not fully described. Emphasis is given to thc solitary- 
wave limit where variations of wave amplitude and vorticity are considered. The 
solutions which differ most from irrotational waves are high waves with large Froudc 
numbers. These high waves enclose large regions of closed circulation and arc 
discussed in some detail since their shape appears to be insensitive to the vortieity 
distribution. 

The flows described are idealized and in that respect many details are of academic 
interest, on the other hand general features of the waves are important for 
applications. Some of the features such as the variation in steepness of the limiting 
waves, and the tendencies for waves to become more or less sharply peaked as 
vorticity varies are relatively well known. We draw particular attention to the 
considerable differences that can exist between the potential and kinetic energy 
densities of waves with vorticity. This could be important in studying the energetics 
of waves in a strong wind. The detailed solutions corresponding to the very large 
waves which are found on very high Froude number flows could also be valuable 
since these are likely to  form in civil engineering works, e.g. the ‘wave’ hydraulic 
jump, and seem to be similar to the waves formed over antidunes in supercritical flow 
over mobile beds. 

2. Mathematical preliminaries and analytic approximations 

function Y(x, y), in which case 
A steady two-dimensional incompressible flow may be described by a stream 

v2yY=- c> (2.1) 
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where t; is the vorticity, which is perpendicular to the ( x ,  y)-plane. If vorticity is 
uniform and constant throughout the flow then Kelvin’s circulation theorem can be 
used to show that it remains constant whilst the flow remains two-dimensional and 
simply connected. Hence (2 .1)  holds within the fluid and Y can be rewritten as the 
sum of a particular integral satisfying ( 1 . 1 )  and an irrotational stream function 
$(x ,  y). It is this feature of constant vorticity flows that simplifies analysis. 

We choose a reference frame in which the wave is at rest, y = 0 is the undisturbed 
free surface or mean water level and y = - h is the plane rigid bed. The water velocity 
u is described by 

in which $ is a velocity potential for the finite perturbation to a horizontal flow with 
constant vorticity t;. The stream function 

* = ($z-<Y-C3 $ J >  (2 .2 )  

(2.3) y=--“c 2 Y 2 -  cy+$(x, Y L  

where @ and $ describe the same irrotational perturbation. The constant c represents 
the wave velocity relative to the ‘original’ water velocity at the surface. 

The definition of the waves’ phase velocity is not a trivial matter. We use the 
equivalent of Stokes’s (1847) first definition of velocity, i.e. the perturbation velocity 
due to the wave at any point below a wave trough is chosen to be such that its phase 
average is zero, i.e. in this case $ and $ are periodic functions of x. Stokes’s second 
definition of phase velocity is the wave speed which gives zero mass flow. For a 
linearized wave in this case, this alternative definition gives 

c2 = c-at;h, (2.4) 

whereas for linearized irrotational waves the velocities would be identical. 

within the fluid. 
The stream function $ and velocity potential $ both satisfy Laplace’s equation 

The kinematic boundary conditions are 

Y = -tt;y2 -cy + $ = constant, ( 2 . 5 )  

$u = 0, (2.6) 

(2.7) 

a t  the free surface y = ~ ( x ) ,  and 

on the bed. y = - h. The constant pressure condition at the free surface becomes 

1 d$, - cy - C l 2  + i$; + 97 = B,  
after using Bernoulli ’s equation. 

The linearized solution is readily found and gives a dispersion relation which can 

( 2 . 8 )  

where co is the linear phase velocity and 

c; = (g/k) tanh (kh)  (2.9) 

is the dispersion relation for linearized irrotational waves of wavenumber k .  Solving 
the quadratic (2.8) for co gives 

(2.10) 
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FIGURE 1. Sketches indicating wave direction and shear profile. On the left (i) is the configuration 
we use, and on the right (ii) the equivalent wave stationary on a stream. ( a )  Wave propagating 
upstream, positive vorticity. ( b )  Wave propagating downstream, negative vorticity. 

Using (2.9) and comparing with the undisturbed flow we can interpret (2.10) as 
showing that the waves travel symmetrically with respect to thc flow a t  a depth 

c: tanh (kh)  W=-= 
29 2k ’ 

(2.11) 

which gives a measure of the depth of water which influences the wave properties, or 
‘wave depth’. The limiting values of W for large and small kh are 6k-’ and ih 
respectively. The right-hand side of (2.10) shows that shear increases the wave speed 
of linearized waves. 

A critical layer occurs in the flow if a t  any depth 

c = -5Y, 
let h, = c / <  be the critical layer depth. Substitution in the linear dispersion equation 
(2.8) and use of the wave depth, W ,  gives 

h, = W + W ( l + & ) ,  

for linear waves. 
Thus if then: is a critical layer it is always a t  a depth greater than 2W, and then 

only ncar 2W for strong shcars. Critical laycrs only occur for waves propagating 
‘ upstream ’, and when 

(2.12) 

In  order to fix ideas we shall only consider positive values of c and k but allow 5 
to have either sign. For convenience of description we shall refer to ‘upstream’ and 
‘downstream ’ in the sense of waves propagating on a flowing stream with maximum 
velocity a t  the surface. See figure 1 (a) in which our configuration for 5 positive is 
shown and tho effect of a stream giving wave propagation ‘upstream’. Similarly 
figure l ( 6 )  shows 5 negative and the corresponding ‘downstream’ propagation. The 
downstream case is equivalent to downwind propagation for the case of a shear 
generated by the wind. 



Waves on water of Jinite depth with constant vorticity 285 

Tsao (1959) extends the linear theory to a third-order solution following the same 
type of approach as for the irrotational St,okes-wave expansion. Tsao’s results, in 
particular phase-speed, have been checked and agreef with our computed results. 

Tsao’s results show that upstream propagating waves are more rounded, i.e. have 
less deviation from a sinusoidal wave, whilst downstream propagating waves have 
sharper steeper crests. As in the irrotational Stokes waves successive terms in the 
expansion increase as depth decreases. They also increase as the vorticity becomes 
more strongly negative. 

3. Numerical method of solution 
Units are chosen so that k = 1 and g = 1 .  This means that the wavelength is 2n. 
Wc work with the complex velocity 

. df 
q ( 2 )  = u--121 = -, 

dz 

where f = $ + i$. The boundary condition (2.6) on the bed is satisfied by considering 
an image region, see figure 2 ( a ) .  The area within one wavelength and its image is 
mapped from the z-plane, with the transformation 

Z(z) = exp( -iz), (3.1) 

to give a closed region in the 2-plane, see figure 2(b) .  The complex velocity potential 
is chosen to be periodic s o f ( z )  transforms to a single-value function F ( 2 )  in the 2- 
plane, analytic between S and S‘ (see figure 2 for notation). The complex velocity 
transforms 

For a point on the surface S in the 2-plane Cauchy’s integral theorem for a complex 
function gives 

and hence from ( 3 . 2 )  

Figure 2 shows the curves over which the integrals are taken. 

be 
We now introduce a parametrization of the surface of the fluid. Let the surface 

R ( 0  = 4 6 )  + iY(E). (3.4) 

The parameter 6 is important in the discretization of the surface which is used in the 
numerical approximation. It is given integer values a t  discretization points. The 
parameterization is also chosen in such a manner that (i) points are concentrated 
near the crest of a wave where they are usually needed to resolve higher curvatures, 

t Equation (2.19) in Tsao (1959) should read, in Tsao’s notation: 

c, = &26(ck+;b). 
Ill-2 
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FIOVRE 2. ( n )  The region of water heneath one wavelength and its image at the  --plane 
( b )  Transformed r@on in the 2-plane. 

and (ii) R(6) is an analytic function of 6 so that high-order numerical approximations 
can easily be found and used with the equispaced discretization off;. 

We require the parameterization to satisfy : 

where 5 is arclength, K is a constant to be determined in the numerical solution and 
a is given as a parameter. If we take a to be zero we have Simmen & Saffman’s (1985) 
parameterization where ds/df; decreases as we approach the wave crest, ensuring a 
concentration of numerical points in that region. As the crest is usually placed a t  
x = K we have for positive values of a a still stronger concentration of points near the 
crest and a consequent rarefaction a t  the troughs, that proves to be useful when 
dealing with steep waves (Tanaka 1983, 1985) and with waves in very shallow water. 
On the other hand big upstream propagating waves tend to have higher curvatures 
a t  the troughs and in that case negative values of a can reduce concentration near 
the crests. 

The flat bed is chosen to be at y = - h. A point z2 on A’B’ is the image in the bed 
of a point z1 on A B  where 

z2 = zT -2ih, (3.6) 

(the asterisk denotes complex conjugate), thus 

e-2h 

Z(z,) = e-2h Z(Z:) = - Z*(z,)’ (3.7) 

and the velocity reflects to give 

d 2 2 )  = Q*(”1). (3.8) 

In  addition waves are presumed to be symmetrical about crests and troughs and 
reflection about the plane x = 0, chosen to be at a trough, gives that an image point 
z3 is 

z3 = - z T ,  (3.9) 

Z(2, )  = Z(  - 2 ; )  = 1/Z(Zl), (3.10) 

Q ( Z 3 )  = 4*(21). (3.11) 
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The effect of the above reflections and introduction of the parameterization is that 
(3.3) can be rewritten : 

where notation is simplified by suppressing dependence on z. 

condition that the velocity is parallel to the surface tangent may be written: 
Boundary conditions at  the surface are incorporated as follows. The kinematic 

lq-<y-CIRs = q*-&J-C. (3.13) 

Bernoulli's equation (2.7) a t  the surface is: 

Iq-[y-c)2 = S(B-qy). (3.14) 

With the relations (3.13) and (3.5) the left-hand side of (3.12) is 

n q ( t f / m t  = n/Z(6)  re+ +a sin2 +) q(5)/h'I  = F ( t )  (3.15) 

say. The expression qR, which occurs in all the integrals on the right-hand side of 
(3.12) can be written 

qR, = (<y+c)Rs+2h'(B-gy)/(l +a sin2 $x)= G(6)  (3.16) 

say. With the substitutions of (3.15) and (3.16) in (3.12) it becomes an integro- 
differential equation for the functions x(5) and y(&. 

To fix the solution we also impose that the height of the wave 

and its mean level is a t  y = 0, i.e. 

y dx = 0. I: 
(3.17) 

(3.18) 

The mean velocity of the irrotational perturbation is chosen to be zero, and 
becomes 

(3.19) 

after using (3.16). 

with the singular integral in (3.12). Following Dold & Peregrine (1986) 
In  order to discretize the integrals for numerical solutions it is necessary to deal 
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The extra term in the last integral makes zero contribution but eliminates the 
singularity since the whole integrand approaches 

(3.21) 

as g+[ .  
Discretizing (3.12) by means of a trapezoidal rule, which is the most accurate 

formula for integrating periodic functions given a t  equispaced points, using (3.21) 
and giving integral values to 6 we have the following set of equations 

G ( 0  G * ( O  G*(O g=n 

g;! (zca -Z(g') - Z ( o  -e-""Z*(5.)) +iH&) Z(6) 

G ( 0  [iR,(6) + R2(6)1 - G*(O 
q ( 5 )  ZlE) -e-"P*(t) 

+ 

(3.22) 

These form a set of 2n equations, considering real and imaginary parts, as the 
imaginary parts for 6 = 0 and = n reduce to identities that  can be easily checked 
in (3.12) taking into account that  Z ( 0 )  and Z(n) are real. 

There are 2n+2 unknowns z(t), y ( f )  but x(0) = 0 and z(n) = 7c are already chosen. 
Further unknowns are c ,  B and K ;  however these are catered for by equations (3.17), 
(3.18) and (3.19). 

The resulting system of 2n + 3 nonlinear equations is solved by Newton iteration. 
The analytical form of the Jacobian has been found with the aid of the computer 
algebra program MACSYMA which also provides Fortran code. 

The initial approximation is provided either by Tsao's (1959) third-order solution 
or by a previous solution. Iterations are stopped when residues are less than l O - ' O  
which usually takes 4 to 7 iterations. The results are considered acceptable when the 
two sides of the relation 

(3.23) 

where I is the excess impulse given below, agree to a t  least 5 decimal places. 
Computations are done on a Systime 8750 (equivalent to a VAX 11/750). To 
compute the second wave in figure 3 ( O ) ,  h = 1, 5 = 1 and H = 1, correct to 5 decimal 
places, 11 points per half wave are enough. This result takes 6 iterations and 29.5 
CPU seconds. 

As well as checking against small-amplitude and irrotational results the 
calculations have been checked by an independent program for unsteady constant- 
vorticity waves which will be described in a future publication. The wave mentioned 
above, with h = 1, 6 = 1 and H = 1, propagated for 50 periods. In that time the 
maximum slope changed 0.0006" and the height of the crest experienced a change of 
0.000002, giving a good verification of both computations. 

For the computation of limiting waves the program is modified by permitting an 
angle a t  the crest and taking one-sided difference formulae in which case equation 
(3.19) is replaced by 

B-gy = 0. (3.24) 
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-1) 
X 

FIC~JRE 3. ( a )  Periodic waves with 5 = - 1 and h = 1 : extreme wave with H = 0.2549, c = 0.6280; 
also H = 0.12. c = 0.5883. ( b )  Periodic waves with 5 = 1 and h = 1 : extreme wave with H = 1.4589, 
c = 1.5108; also H = 1,  c = 1.4421; and H = 0.5, c = 1.3580. 

Delachenal (1973) shows that the crest should have an angle of 120", the vorticity 
only affects the curvature on each side. That result is assumed in the computations 
presented. When the angle is left free to be determined in the program, it is 
calculated to be within a fraction of a degree of 120". 

Integral yuantitics that are evaluated include the excess impulse 

excess kinetic energy : 

(3.25) 

excess potential energy : 

2 V = 1; qr2 dx. 

Applying Stokes's theorem to (3.25) and (3.26) we have 

(3.27) 

(3.28) 

(3.29) 

where the surface integrals are expressed in terms of the point parameter c.  
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0 1 2 3 4 

FIGURE 4. Graphs phase speed against wave height for five sets of periodic waves with h = 1 : 

H 

C = - l ,  c = o .  [ =  1 , [ = 2 , [ = 3 .  

4. Periodic waves 
The solutions in our scaled variables have wavelength 27c and gravity unity, and 

depend on the three parameters : vorticity, <, wave height, H ,  and mean water depth 
h. Promincnt characteristics of the effect of vorticity are already evident in Tsao’s 
(1959) approximations and Simmen & Saffman’s (1985) numerical solutions for deep 
water. For negative vorticity (waves propagating ‘downstream ’) crests become 
sharper and smaller. For positive vorticity (waves propagating ‘upstream ’) waves 
become more rounded, and for strong positive vorticity overhanging profiles and 
bizarrc variations of phase velocity with hcight occur. 

Our computations cover a region of the three-parameter space in which 6 varies 
from - 1 to 3, h from 0.5 to 2 and H from zcro to the cxtrcmc wavc allowcd by thc 
other parameters. Representative examples are shown in figure 3, for h = 1 and 
6 = If: 1. These figures, and all other figures showing wave profiles are without any 
vertical exaggeration. The effects of vorticity mentioned above are clear, as is the 
strong dependence on vorticity of the limiting wavc height. The different curvatures 
at the crests of the limiting waves may also be noted. The phase velocities of waves 
for a wide range of vorticities for this depth of water are given in figure 4. As with 
irrotational waves velocity increases with amplitude except near the limiting waves. 
The variation with vorticity is mainly that which is evident in the linear dispersion 
equation (2.10). It is also clear that for larger vorticity very high waves with high 
speeds are possible. We discuss these waves below. One important feature where 
vorticity has a strong influence even on small amplitude waves is the partition of the 
energy density between kinetic energy, T, and potential energy V .  For linear waves 
the ratio is 

T cf 
- = - = 1+2h2+2h(l+h2);, v c; 

where h = +<c;,fg = ;<(tanh (kh));,  1 4 4  



Waves on  water of JinitP depth with constant eorticity 291 

V 1.6 
_T 

0.8 - 

[ = - I  

0 0.2 0.4 0.6 0.8 1 .O 1.2 1.4 1.6 
H 

c =  - l . c = O a n d c = l .  
FIGURE 5. Graphs of T / V  against wave height for three sets of periodic Naves with 

0 1 2 3 4 5 6 
FIGURE 6. Periodic wave profiles for h = 2, = 3: extreme wave with H = 6.489. c = 

h =  1 :  

6.845 : 
also H = 6, c = 6.748; H = 5, c = 7.110; H = 4, c = 6.906; and H = 1 ,  c = 3.444. 

in dimensional units. Note that there is an appreciable variation of T/V in the range 
of vorticity - 1 < 5 < 1. The variation with wave amplitude for cases with h = 1 is 
shown in figure 5 .  This shows the importance of the linear ratio, relative to the 
amplitude variation. The substantial variation of the T/V ratio is not usually 
allowed for in the analysis of field and experimental wind waves. In  such analysis 
linear irrotational flow results are normally used to  calculate quantities such as 
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0 1 2 3 4 5 6 

F l G l r R R  7 .  ( a )  Profile of a p u w  rotational wave (9  = 0). with 5 = 1 ,  H = 2.45 and c = 1.153. 
( h )  Sketch of a possible limiting nave, for zero gravity. 

energy spect,ra from measurements of surface elevation. In  strong winds the vorticity 
near the surface, may often be strong enough to  make a suitable correction 
significant) for t>he short,er waves. The dimensionless parameter h defined in (4.2) 
shows tha t  for waves of given wavenumber the effect of vorticity is less in shallow 
water, whcre the fact>or tanh (kh)  is smaller than in deep water. 

For values of vorticity larger than 1 ,  Simmen bz Saffman (1985) found waves with 
bizarre shapes and high phase velocities. Even stranger waves are found in finite 
water depths. ,4 selection of wave profiles for y = 3, h, = 2. are shown in figure 6. For 
water of this depth surface waves are often treated as deep water waws  since 
tanh ( 2 )  = 0.96, however as  figure 6 shows all the large waves have flat troughs which 
are clearly limited by the presence of tho bed. Even for much greater values of h, this 
phenomenon is evident. 

It appears tha t  the volume of water specified in a computat.ion is the quantity 
most relevant in determining the range of large waves found. For finite tlcpt>h of 
water bhc condit'ion of zero mean level signifies a constant' area 27ch in the 
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computation. Thus all the waves in figure 6 have the same volume of water above the 
bed. I n  deep water there is no volume constraint, nor is there such a constraint for 
solitary waves, unless volume above the mean surface level is used as a parameter to 
specify waves. The ‘finite volume’ also means that despite the existence of 
overhanging wave profiles, relatively large values of h are needed before it is possible 
for the overhangs to touch. Simmen & Saffman (1985, figure 9) have gaps in their 
solution branches due to touching and overlapping waves. By considering the 
following extreme case it is possible to estimate the volume of water required for an 
overlapping wave. 

The large rounded waves have large values of vorticity, phase-velocity and of the 
ratio l ’ /V.  These suggest that  vorticity and inertia are more important than gravity. 
It takes only a little imagination to move from the profiles of ‘medium’ height in 
figure 6 to a gravity-free wave which is shown in figure 7(a).  Further, the trend of 
solutions suggests that  there may be a limiting wave which has a circular shape made 
up of water in rigid-body rotation as sketched in figure 7 ( b ) .  The fluid velocity is 
continuous with that in the layer of water beneath if the circle rolls on the surface. 
Clearly the thickness of the lower strip of water can have any value. If the circle were 
the limit of periodic waves then they would touch a t  a wavelength of 27c only if the 
mean level were greater than $7~’. 

The circular vortex ‘wave’ can also be solitary. All the higher wave profiles in 
figure 6 have the character of solitary waves. That is, the troughs are flat and 
correspond to uniform sheared flow. Further features of these waves are discussed in 
the following section on solitary waves. 

5. Solitary-wave solutions 
The natural lengthscale for the study of solitary waves is the depth of the 

undisturbed flow, h, so that in presenting data, different units are now used with h 
and gravity as unity whereas for the periodic waves the wavelength is chosen as 27c. 
In particular, this means that values for vorticity are not directly comparable, for 
example the three highest waves with vorticity 5 = 3 in figure 6 have vorticities 
52 = 1.415, 52 = 1.165 and 52 = 1.283 in order of increasing wave height, where 52 is 
the dimensionless vorticity in the new units. On the other hand infinitely many 
different periodic waves with flat troughs when scaled by the solitary-wave units 
based on water depth in the trough give the same solitary wave. That fact helps to 
clarify the interaction between vorticity and depth already mentioned for shallow- 
water periodic waves (see equations (4.1) and (4.2)). In  these solitary wave units we 
denote the wave height by a. A different definition of wave velocity is also 
appropriate. We define S to be the wave velocity relative to the surface water in the 
region with constant depth, again taking figure 6 as an example, the three higher 
waves have S = 4.162, S = 5.286 and X = 4.221 in that order, whereas the values of 
c are c = 2.008, c = 2.471 and c = 2.438, respectively. 

Most of the examples of solitary waves presented here were calculated by using the 
program for periodic waves with depth from trough to bed h = 0.2, that is with 
wavelength 10n times the depth, some with h = 0.1 and others with h = 0.01. An 
indication of accuracy is gained by comparison with irrotational wave results. The 
limiting irrotational solitary wave has height a = 0.8332 and velocity S = 1.2909 
(Hunter & Vanden-Broeck 1983), whereas with 40 points per half wave we found 
0.8302 and 1.2885 respectively. Profiles of the limiting irrotational solitary wave and 
the limiting waves for 52 = 5 1 arc shown in figure 8. We have verified that the 
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FIGURE 9. Graphs of solitary wave velocity against wave-height for four values of SZ : 
- 1 ,  -0.5, -0.25, 0. 

periodic computations do permit appropriate exponential decay for the outskirts of 
these solitary waves. 

The velocities S of a range of solitary waves are shown in figures 9 and 10. The 
approximate weakly nonlinear result of Benjamin (1962 equation (4.7)) is used for 
the low-amplitude results since these waves have a greater length than the limited 
region we use. The curves shown would lie much closer together if the velocity were 
taken relative to the mean flow, i.e. if S-$2 were shown. Benjamin’s result in our 
notation is 

The variations shown in figure 10 are more striking. Note the difference in scales 
between figures 9 and 10. The curves for fz = 1.15 and 52 = 1.175 show that there 
may be as many as thrce diffcrcnt waves of the same height with different velocities. 
The ‘loop’ in the curve which grows rapidly with fz once fz > 1 could not be fully 
defined for 52 = 1.2. The limiting wavc with a corner a t  its crcst for 52 = 1.2 has 
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FTGI-RE 10. Graphs of solitary wave velocity against wave-height for six values of 0 : 
0,  0.25. 0 .5 ,  1.0, 1.15, 1.175. 

-1 0 1 2 sz 
FTCIJRE 1 1 .  Curves in the vorticity. wave-height plane: -. Extreme solitary waves; 
Highest solitary waves. --, Solitary waves with zero pressure gradients a t  their crests; - 
Line separating solitary waves with eddies (above) from those without. 

height a = 9.28, but the search for the highest wave on the two branches of the 
loop was stopped after waves of height approximately 34 and 40 were found. From 
the discussion at  the end of the last section we expect the wave height and phase 
velocity of the higher and rounder waves can increase indefinitely for large enough 
vorticity. 

In figure 11 we show four different curves: the first one gives the values for the 
wave-height of the limiting waves for values of D ranging from - 1 to 1.175, we know 
that from D = - 1 to Q = 1 the limiting wavc is the highest wave so, in that region, 
all the solutions stay between the horizontal axis (zero wave height) and the curve 
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FIG~JRR 12. Graphs of total energy against wave height for solitary waves with 52 = 1 .1  
and 52 = 1.175. 
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FIGURE 13. The ratio of kinetic energy t o  potential energy variation with wave height for solitary 

waves with 52 = 1.1 and 52 = 1.175. 

of limiting waves, then for 0 slightly greater than 1 we start to have round waves 
higher than the limiting waves, the maximum values of a for those higher waves are 
shown by the curve that diverges from the curve of limiting waves, we could not 
compute many values since for values of 0 > 1.175 they appear to increase 
extremely fast with 0, as already noted. The third curve shows the boundary 
between waves with and without eddies beneath their crests. Eddies are discussed 
in the next section. Finally the last curve marks the divide between waves with the 
pressure underneath their crests below the atmospheric value and those with this 
pressure above that value, also discussed in the next section. 

The values of'energy both kinetic and potential for all the waves with 0 = 1.1 and 
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FIGURE 14. (a) Streamlines and (b) pressure contours for periodic wave with 5 = 2. h = 1. H = 1 .  
Rescaling in solitary wave units: SZ = 1.481, a = 1.823 and S = 3.302 (not a good example of a 
solitary wave I). 

L? = 1.175 are presented in figures 12 and 13. Figure 12 shows the values of total 
energy (T + V )  for both values of vorticity, and we find the same pattern as for wave 
speed; figure 13 shows the ratios T / V  and we find again in a lesser scale the same 
behaviour. Considering the results in both figures we conclude that for high enough 
values of the vorticity 52, as we increase wave height we move into a region of the 
solution space in which the waves have an excess of kinetic energy, over 80 % of the 
total, and look very round in the manncr of the pure vortical wave shown in the end 
of last section. Then as we proceed along thc solution curve the share of kinetic 
energy is reduced in favour of potential energy. In  other words we move from a 
region in which the vortical effects are dominant, the upper part of the folds, towards 
one in which gravity is more important, the lower portion of the folds. As vorticity 
increases there appears to be no bound for wave height and energy. 

These results for solitary waves look closer to the results for deep-watcr waves 
presented by Simmcn & Saffman (1985) than to those for periodic shallow-water 
waves, in the sense that the former show such peculiarities as folds in the curves for 
phase velocity against height and the existence of waves higher than extreme waves, 
that we did not find in the latter. Periodic deep-water waves and solitary waves have 
in common the infinite mass of available water unlike periodic shallow water waves. 
A solitary wave does not have the possibility of self interception so it cannot give rise 
to ‘gaps’ in the solution space. 

6. Surface shear waves, eddies and stability 
The large bulbous waves displayed in figures 3 and 11 can be better understood 

after examining the velocity and pressure fields beneath the surface. One repre- 
scntativc wave is shown in figurc 14. As may be seen thcrc is a largc closed 
eddy beneath the wave. Note also its velocity in solitary-wave units, S = 3.302, 
corresponds to a high Froudc number. These large waves can be interpreted, if 
stationary, as a thin sheet of high-speed water passing over an eddy. 

Thcrc is a close resemblance bctwccn thcsc wavcs and the ‘surface shear wavcs’ 
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FICCKE 1.5. X surfwe shear wavr occurring naturally in backwash on a beach. 

described in Peregrine (1974). That model was stimulated by the observation of steep 
large rounded waves in the backwash of waves incident on beaches. Such a wave 
arising naturally is shown in the photograph of figure 15. Another surface shear wave 
also described in Peregrine (1974) is the ‘wave hydraulic jump’ (see also discussion 
of that paper). Both of these waves are easily reproduced in the laboratory, and are 
usually almost stationary on a fast moving strcam. They occur over fixed beds. but 
also seem to have a counterpart in supercritical flow over antidunes on a mobile 
bed. 

Peregrine’s (1974) model does not depend on a specific vorticity distribution but 
simply characterizes the thin sheet of surface water by its momentum flux and 
considers its deflection due to hydrostatic pressure in the almost stagnant water 
beneath it. The ordinary differential equation so obtained for the shape of the wave 
is the same as that for the finite bending of a thin beam or elastiea. This gives an easy 
way of comparing Peregrine‘s solution with the figures in this paper : just take a piece 
of paper or card and bend it whilst holding it a t  each side. Comparison with figure 14 
will show that most of the wave closely follows such a curve. 

The pressurc field in figure 14(b) is easily interpreted in terms of a high-speed 
surface flow. A high transverse pressure gradient is required to turn the flow sharply 
at  the bast of the wave, hence the substantial excess pressures on the bed. Then over 
the main portion of the wave the pressure falls below atmospheric as in Peregrine’s 
(1974) model, and ‘sucks’ the surface jet around in a curve which is tighter than the 
corresponding free-fall parabola. As the jet ‘lands’ near the bed once again high 
pressure gradients turn it back into a horizontal flow. To some extent the constant 
vortieity flow here may be a better model than Peregrine’s for very steep waves over 
closed eddies. This is due to the Prandtl-Batchelor result that in two-dimensional 
high-Reynolds-number flow steady recirculating regions with closed streamlines 
have constant vorticity. 
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FIGURE 16. The boundary between waves with and without critical layers: linear theory 
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FIGURE 17. Vorticity and wave height for periodic waves, the full lines give the wave height of‘the 
limiting wave, for three different values of h, h = 0.5, 1 and 2, the broken lines mark the separation 
between waves with and without eddies for the corresponding depths. 

5 

Flow separation from a solid surface is often thought of as a viscous boundary- 
layer phenomenon. However, as these solutions show, separation to  form an eddy 
occurs for inviscid flows with vorticity. This is not a new observation, Perry & Fairlie 
(1975) discuss an example where their inviscid model with vorticity gives streamlines 
for an eddy of separated flow which are similar to our free-surface example in figure 
14 (a ) .  

Eddies also occur for the periodic waves. I n  fact if there is a critical layer above 
the bed ‘cats eye’ eddies form for any finite amplitude wave. Figurc 16 shows thc 
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FIGUKE 18. Rear view of a naturally occurring surface shear wave i n  backwash. Kate the way in 
which irregularities of the flow have grown as they pass over the crest, of the waVe. 

boundary in the (6. h)-plane between linearized waves with and without a critical 
layer, given by (2.12). As already noticed the critical layer for infinitcsimal wavcs is 
so deep that its influence on the waves is likely to be slight. Large waves are more 
likely to have eddies and figure 17 gives an indication of whcn this wcurs. 

The low pressure beneath the upper half of the wave means that the normal 
pressure gradient at thc surface is opposite to the usual direction, with pressure 
lower than atmospheric in the water. This implies the surface is susceptible to 
Rayleigh-Taylor instability. This instability has its greatest growth rate for short 
wavelengths. but at the shortest scales surface tension is a stabilizing influence. In 
natural flows growth of the surface fluctuations due to initial turbulence is cvident 
(see figure 18) The growth of small disturbances is limitcd by their translation 
through the unstable region thus waves on a laminar flow can be both smooth and 
steep. We also see such a growth of disturbances in unsteady computations. 

7. Conclusions 
We have presented some of the results of computations of steady periodic waves 

on a flow of uniform vorticity. In part these give results that  are the expected 
extensions of the approximate-Stokes wave type of expansion of Tsao (1959), the 
stream-function approximation of Ualrymple (1974) and the deepwater rcsults 
obtained by Sinimen & Saffman (1985) using a similar numerical method. Since these 
results lack novelty, and precise numerical results are not of direct value for 
applications because of the special vorticity distribution. wc have givcn only a short 
a c w u n t  of the periodic waves. 

However it should be noted that therc is a large variation in the ratio of kinetic 
energy to potential energy. This implies that  conventional measurements of wind 
waves which use only surface elevation may give a poor approximation to thc 
total wave energy whcn there are steep waves riding on a significant wind drift 
current. 
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The solitary waves with positive vorticity. that  is with vorticity such as  a wave 
propagating against a stream would meet, show striking effects with large bulbous 
waves which have no apparent upper limit on thcir size. There are parallcls with the 
stationary 'surface shear waves ' described by Peregrine (1974). We consider that  the 
character of the bulbous waves is independent of the precise nature of thcir vorticity 
distribution and the solutions presented herc are likely to  be a better model than 
Peregrine's very simple stationary shear layer. Solutions of this type are also 
described by Pullin & Grimshaw (1988). 

Surface shear waves arise readily as stationary waves on high-Froudc-number 
flows. We note tha t  the upper portion of such waves has a pressure in the water that  
is less tha t  atmospheric. This permits growth of Rayleigh-Taylor instabilitics which 
are evident when the waves form on turbulent flows. 

An aspect of wider interest in fluid dynamivs is the flow separation that  occurs 
from the bed in the steep waves. A closed eddy occurs for the upstream propagating 
waves whenever there is a critical layer in the flow. However, the critical layer for 
infinitesimal waves is always a t  a depth where wave induced flow is small and the 
cats-eye eddies, which we obtain (and do not document here) are not important for 
the surface flow (see also Peregrine 1976, 9 14, B3). For the solitary waves eddies are 
important. Figure 11 gives an indication of the region in parameter space in which 
eddies occur. We would particularly like to  note tha t  in unsteady flows, such as the 
backwash on beaches, the surface shear waves arise spontaneously and slowly evolve 
in shape. Any slowly varying type of solution is very likely to  follow a trajectory in 
parameter space which crosses the boundary between waves without eddies to  waves 
with eddies. Such a transition involves a flow separation from the bed which may be 
entirely inviscid in character. 

A. F. T. da S. acknowledges financial support from 'Conselho Nacional dc 
Pesquisas e Desenvolvimento Tecndogico ' Cnpq, grant reference number 20.2554/ 
85-MA. 
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